迁移学习技巧:微调

迁移学习技巧:微调

详细参考:https://zh.d2l.ai/chapter_computer-vision/fine-tuning.html#id2

微调的四个步骤

  1. 源数据集(例如ImageNet数据集)上预训练神经网络模型,即源模型

  2. 创建一个新的神经网络模型,即目标模型。这将复制源模型上的所有模型设计及其参数(输出层除外)。我们假定这些模型参数包含从源数据集中学到的知识,这些知识也将适用于目标数据集。我们还假设源模型的输出层与源数据集的标签密切相关;因此不在目标模型中使用该层。

  3. 向目标模型添加输出层,其输出数是目标数据集中的类别数。然后随机初始化该层的模型参数。

  4. 在目标数据集(如椅子数据集)上训练目标模型。输出层将从头开始进行训练,而所有其他层的参数将根据源模型的参数进行微调。

../_images/finetune.svg

目标数据集比源数据集小得多时,微调有助于提高模型的泛化能力

实践:(待定)

小结

  • 迁移学习将从源数据集中学到的知识迁移到目标数据集,微调是迁移学习的常见技巧。

  • 除输出层外,目标模型从源模型中复制所有模型设计及其参数,并根据目标数据集对这些参数进行微调。但是,目标模型的输出层需要从头开始训练。

  • 通常,微调参数使用较小的学习率,而从头开始训练输出层可以使用更大的学习率

  • Copyright: Copyright is owned by the author. For commercial reprints, please contact the author for authorization. For non-commercial reprints, please indicate the source.
  • Copyrights © 2023-2024 Guijie Wang
  • Visitors: | Views:

请我喝杯咖啡吧~

支付宝
微信